CLEEN (Continuous Lower Energy, Emissions and Noise) Program

Overview

Presented CLEEN Consortium


to:

By: Rhett Jefferies

Federal Aviation Administration

Office of Environment and Energy

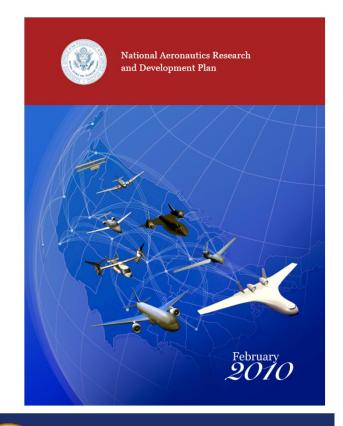
Date: October 27, 2010

Aviation Environmental Goals and Challenges

NextGen goal to increase mobility is dependent upon addressing & mitigating aviation environmental impacts & dealing with related energy issues

NextGen environmental goals

- Absolute reduction of significant community noise and air quality emissions impacts
- Improve NAS energy efficiency and, supply of and access to, alternative fuel sources
- Achieve carbon neutral growth by 2020 compared to 2005 baseline for *climate change*
- Reduce significant aviation impacts associated with water quality


5-Pillar approach to develop solutions

- P1 Improved science and modeling
- P2 Accelerated maturation of new aircraft technologies
- P3 Renewable fuels
- P4 Accelerated ATM Improvements and Efficiencies
- P5 Policies, Environmental Standards, Market Based Measures and Environmental Management System

FAA CLEEN Program

- Address NextGen environmental goals in partnership with industry
- Mature and demonstrate promising energy efficient, clean and quiet technologies
- Advance sustainable alternative fuels for aviation
- Assess technology suitability for retrofit or re-engine
- Meet national R&D goals

CLEEN Program* Goals

Develop and demonstrate (TRL 6-7) certifiable aircraft technology

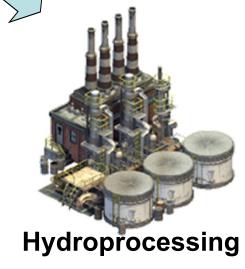
CORNERS OF THE TRADE SPACE	CLEEN (N+1) (2015)** Ref: B737/CFM56-7B	N+2 (2020)*** Ref: B777-200/GE-90	N+3 (2025)***
Noise (cum below Stage 4)	-32 dB	-42 dB	-71 dB
LTO NO _x Emissions (Below CAEP 6)	-60%	-75%	better than -75%
Aircraft Fuel Burn	-33%	-50%	better than -70%

^{*} Consistent w/ National Aeronautics Research and Development Plan

^{***} Technology Readiness Level for key technologies = 4-6

^{**} EIS beginning in 2015

CLEEN Program Goals (continued)


Advance use of "drop-in" renewable alternative fuels

- No compromise in safety
- Successful demonstration
- Quantification of environmental impacts, costs and benefits

CLEEN Timeframe and Funding

- Timeframe: CY 2010-2014
- Total Budget: \$125M (1:1 Cost Share)
- Market Research Conference: May 2008
- Solicitation released: May 12, 2009
- Solicitation closed: July 21, 2009
- Awards Completed: June 22, 2010
- CLEEN Companies: Boeing, GE, Honeywell, P&W and Rolls-Royce

Company	Technology	Goal Impact
	Ceramic Matrix Composite Acoustic	Fuel-burn
	Nozzle Nozzle	Noise
Boeing	Adaptable Ote despet tailing edge of the	Fuel-burn
	Trailing Edges	Noise
	Fuel system material swell & fuel absorption	Alt Fuels

Company	Technology	Goal Impact
GE	Open Rotor	Fuel-burn
		Noise
	TAPS II Lean Combustor	Emissions
	Flight Mgt System /Air Traffic	Fuel-burn
	Mgt System Optimization	Noise

Company	Technology	Goal Impact
ЦоромиоН	Engine weight reduction; high T3 impeller; advanced materials	Fuel-burn
Honeywell	100% HRJ & bio-aromatic assessments & flt test	Alt Fuels
	Ultra-high	Fuel-burn
P&W	Bypass Ratio Geared	Emis- sions
	Turbo Fan	Noise

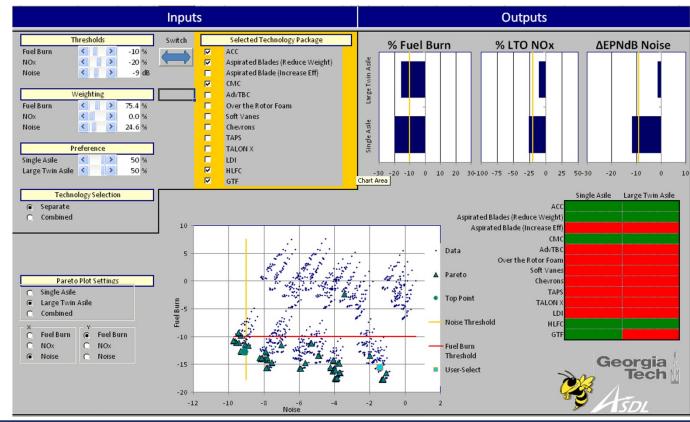
Company	Technology	Goal Impact
Rolls-Royce	Dual wall turbine blade	Fuel-burn
	Ceramic Matrix Composite turbine blade tracks	Fuel-burn
	HRJ Characterization & flight test of alternative fuel (business jet)	Alt Fuels
	Engine tests of future alternative fuels (twin-aisle aircraft)	Alt Fuels

Independent Technology Assessment

- Using Environmental Design Space (EDS) for aircraft and fleet-wide estimates
- Two-phase approach
 - 1st Phase: assess impact of CLEEN technologies on representative aircraft using publicly available data;
 - 2nd Phase: assess specific CLEEN technology impacts using contractor-provided data (proprietary)

FY10	FY11	FY12	FY13	FY14
	Phase I			
			Phase II	

EDS Representative CLEEN Technologies


FUEL BURN	NOISE	EMISSIONS
Retro-fit non-planar wing tips	Landing Gear Fairings	TAPS
Natural laminar flow control	Flap fences/flaplets	Talon X
Open rotor	Fixed Chevrons	HRJ alt fuels
Geared turbofan	Combustor liner	
Active cooling	Variable area nozzle	
Highly loaded compressor	Stator sweep and lean	
Highly loaded turbine	Acoustically soft vane	
Ceramic matrix composites	Aft cowl liners	
Adaptive trailing edge	Zero splice inlet	
FMS controlled flight trajectory	Nose lip liner	
End wall contouring		

Independent Technology Assessment (Con't)

Subsystem
Technology
Effects on
Vehicle

Fleet Level
Implications

- Assess technology combinations
- Identify synergistic technologies
- Compare to company estimate

CLEEN Consortium

- Semi-annual meeting with government and industry partners
- Provides forum to review progress and address issues
- Plenary session will be open to all attendees and will include overview presentations (unlimited rights version)
- Some open sessions may focus on specific topics in a workshop format

Way Forward

- Address NextGen and National R&D environment and energy goals
- Promote transition of demonstrated technologies to the fleet
- Conduct independent assessment of technologies to evaluate fleet-wide benefits
- Foster qualification/certification of aviation alternative fuels

CLEEN Consortium Goals

- Facilitate cooperation among awardees
- Spur technical interchange
- Provide mechanism for effective government-industry collaboration
- Accelerate technology transition to commercial products
- Provide vehicle to more effectively identify & address technology gaps

Open Plenary Session Agenda

9:00 Boeing

9:40 Break

10:00 GE

10:40 Honeywell

11:20 Pratt & Whitney

Noon Lunch

1:00 Rolls-Royce

1:40 EDS Presentation (GA Tech)

Open Plenary Session Agenda (Cont)

2:15 Discussion: EDS Phase II Model

Integration Approaches

2:45 Break

3:00 Discussion: Future Consortium

meetings; Sub-committee

formation

5:00 Adjourn

